Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
2.
Clin Epigenetics ; 13(1): 187, 2021 10 11.
Article in English | MEDLINE | ID: covidwho-1526657

ABSTRACT

BACKGROUND: SARS-CoV-2 uses the angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP1) receptors for entry into cells, and the serine protease TMPRSS2 for S protein priming. Inhibition of protease activity or the engagement with ACE2 and NRP1 receptors has been shown to be an effective strategy for blocking infectivity and viral spreading. Valproic acid (VPA; 2-propylpentanoic acid) is an epigenetic drug approved for clinical use. It produces potent antiviral and anti-inflammatory effects through its function as a histone deacetylase (HDAC) inhibitor. Here, we propose VPA as a potential candidate to tackle COVID-19, in which rapid viral spread and replication, and hyperinflammation are crucial elements. RESULTS: We used diverse cell lines (HK-2, Huh-7, HUVEC, Caco-2, and BEAS-2B) to analyze the effect of VPA and other HDAC inhibitors on the expression of the ACE-2 and NRP-1 receptors and their ability to inhibit infectivity, viral production, and the inflammatory response. Treatment with VPA significantly reduced expression of the ACE2 and NRP1 host proteins in all cell lines through a mechanism mediated by its HDAC inhibitory activity. The effect is maintained after SARS-CoV-2 infection. Consequently, the treatment of cells with VPA before infection impairs production of SARS-CoV-2 infectious viruses, but not that of other ACE2- and NRP1-independent viruses (VSV and HCoV-229E). Moreover, the addition of VPA 1 h post-infection with SARS-CoV-2 reduces the production of infectious viruses in a dose-dependent manner without significantly modifying the genomic and subgenomic messenger RNAs (gRNA and sg mRNAs) or protein levels of N protein. The production of inflammatory cytokines (TNF-α and IL-6) induced by TNF-α and SARS-CoV-2 infection is diminished in the presence of VPA. CONCLUSIONS: Our data showed that VPA blocks three essential processes determining the severity of COVID-19. It downregulates the expression of ACE2 and NRP1, reducing the infectivity of SARS-CoV-2; it decreases viral yields, probably because it affects virus budding or virions stability; and it dampens the triggered inflammatory response. Thus, administering VPA could be considered a safe treatment for COVID-19 patients until vaccines have been rolled out across the world.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/prevention & control , Epigenesis, Genetic/physiology , Neuropilin-1/genetics , Receptors, Virus/drug effects , Valproic Acid/pharmacology , Angiotensin-Converting Enzyme 2/drug effects , Antiviral Agents/pharmacology , Cells, Cultured , Enzyme Inhibitors/pharmacology , Epigenesis, Genetic/genetics , Humans , Neuropilin-1/drug effects , SARS-CoV-2
3.
J Sep Sci ; 45(2): 456-467, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1499288

ABSTRACT

Chloroquine and hydroxychloroquine have been studied since the early clinical treatment of SARS-CoV-2 outbreak. Considering these two chiral drugs are currently in use as the racemate, high-expression angiotensin-converting enzyme 2 cell membrane chromatography was established for investigating the differences of two paired enantiomers binding to angiotensin-converting enzyme 2 receptor. Molecular docking assay and detection of SARS-CoV-2 spike pseudotyped virus entry into angiotensin-converting enzyme 2-HEK293T cells were also conducted for further investigation. Results showed that each single enantiomer could bind well to angiotensin-converting enzyme 2, but there were differences between the paired enantiomers and corresponding racemate in frontal analysis. R-Chloroquine showed better angiotensin-converting enzyme 2 receptor binding ability compared to S-chloroquine/chloroquine (racemate). S-Hydroxychloroquine showed better angiotensin-converting enzyme 2 receptor binding ability than R-hydroxychloroquine/hydroxychloroquine. Moreover, each single enantiomer was proved effective compared with the control group; compared with S-chloroquine or the racemate, R-chloroquine showed better inhibitory effects at the same concentration. As for hydroxychloroquine, R-hydroxychloroquine showed better inhibitory effects than S-hydroxychloroquine, but it slightly worse than the racemate. In conclusion, R-chloroquine showed better angiotensin-converting enzyme 2 receptor binding ability and inhibitory effects compared to S-chloroquine/chloroquine (racemate). S-Hydroxychloroquine showed better angiotensin-converting enzyme 2 receptor binding ability than R-hydroxychloroquine/hydroxychloroquine (racemate), while the effect of preventing SARS-CoV-2 pseudovirus from entering cells was weaker than R-hydroxychloroquine/hydroxychloroquine (racemate).


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/drug effects , Chloroquine/chemistry , Chloroquine/pharmacology , Chromatography, High Pressure Liquid/methods , Hydroxychloroquine/chemistry , Hydroxychloroquine/pharmacology , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/virology , Cell Membrane/chemistry , Cell Membrane/drug effects , Cell Membrane/virology , HEK293 Cells , Humans , In Vitro Techniques , Molecular Docking Simulation , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/chemistry , Receptors, Virus/drug effects , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , Solvents , Stereoisomerism , Viral Pseudotyping , Virus Internalization , COVID-19 Drug Treatment
4.
J Cell Biochem ; 123(2): 347-358, 2022 02.
Article in English | MEDLINE | ID: covidwho-1499273

ABSTRACT

As per the World Health Organization report, around 226 844 344 confirmed positive cases and 4 666 334 deaths are reported till September 17, 2021 due to the recent viral outbreak. A novel coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) is responsible for the associated coronavirus disease (COVID-19), which causes serious or even fatal respiratory tract infection and yet no approved therapeutics or effective treatment is currently available to combat the outbreak. Due to the emergency, the drug repurposing approach is being explored for COVID-19. In this study, we attempt to understand the potential mechanism and also the effect of the approved antiviral drugs against the SARS-CoV-2 main protease (Mpro). To understand the mechanism of inhibition of the malaria drug hydroxychloroquine (HCQ) against SARS-CoV-2, we performed molecular interaction studies. The studies revealed that HCQ docked at the active site of the Human ACE2 receptor as a possible way of inhibition. Our in silico analysis revealed that the three drugs Lopinavir, Ritonavir, and Remdesivir showed interaction with the active site residues of Mpro. During molecular dynamics simulation, based on the binding free energy contributions, Lopinavir showed better results than Ritonavir and Remdesivir.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Hydroxychloroquine/pharmacology , Lopinavir/pharmacology , Receptors, Virus/drug effects , Ritonavir/pharmacology , SARS-CoV-2/drug effects , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Alanine/pharmacology , Alanine/therapeutic use , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/physiology , Antiviral Agents/therapeutic use , Binding Sites , Catalytic Domain/drug effects , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/physiology , Datasets as Topic , Drug Repositioning , Energy Transfer , Humans , Hydroxychloroquine/therapeutic use , Lopinavir/therapeutic use , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Receptors, Virus/physiology , Ritonavir/therapeutic use
5.
Nat Commun ; 12(1): 4887, 2021 08 09.
Article in English | MEDLINE | ID: covidwho-1349665

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus that is spreading rapidly, which seriously impacts global public health and economy. Thus, developing effective drugs remains urgent. We identify two potent antibodies, nCoVmab1 and nCoVmab2, targeting the SARS-CoV-2 spike protein receptor-binding domain (RBD) with high affinities from a naïve human phage-displayed Fab library. nCoVmab1 and nCoVmab2 neutralize authentic SARS-CoV-2 with picomolar and nanomolar IC50 values, respectively. No detectable defects of nCoVmab1 and nCoVmab2 are found during the preliminary druggability evaluation. nCoVmab1 could reduce viral titer and lung injury when administered prophylactically and therapeutically in human angiotensin-converting enzyme II (hACE2)-transgenic mice. Therefore, phage display platform could be efficiently used for rapid development of neutralizing monoclonal antibodies (nmabs) with clinical potential against emerging infectious diseases. In addition, we determinate epitopes in RBD of these antibodies to elucidate the neutralizing mechanism. We also convert nCoVmab1 and nCoVmab2 to their germline formats for further analysis, which reveals the contribution of somatic hypermutation (SHM) during nCoVmab1 and nCoVmab2 maturation. Our findings not only provide two highly potent nmabs against SARS-CoV-2 as prophylactic and therapeutic candidates, but also give some clues for development of anti-SARS-CoV-2 agents (e.g., drugs and vaccines) targeting the RBD.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Angiotensin-Converting Enzyme 2/genetics , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Binding Sites , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Chlorocebus aethiops , Epitopes/immunology , Humans , Male , Mice , Mice, Transgenic , Protein Binding , Receptors, Virus/drug effects , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus , Vero Cells
6.
Hipertens Riesgo Vasc ; 37(4): 169-175, 2020.
Article in Spanish | MEDLINE | ID: covidwho-1322115

ABSTRACT

The first case of COVID-19 was reported on 31 December 2019 in Wuhan, China. Ever since there has been unprecedented and growing interest in learning about all aspects of this new disease. Debate has been generated as to the association between antihypertensive therapy with renin-angiotensin-aldosterone system (RAAS) inhibitors and SARS-CoV-2 infection. While many questions as yet remain unanswered, the aim of this report is to inform health professionals about the current state of knowledge. Because this is an ever-evolving topic, the recommendation is that it be updated as new evidence becomes available. Below, we provide a review of pre-clinical and clinical studies that link coronavirus to the RAAS.


Subject(s)
Betacoronavirus , Coronavirus Infections/physiopathology , Pandemics , Pneumonia, Viral/physiopathology , Renin-Angiotensin System/physiology , ADAM17 Protein/physiology , Angiotensin II/physiology , Angiotensin Receptor Antagonists/adverse effects , Angiotensin Receptor Antagonists/pharmacology , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme 2 , Angiotensin-Converting Enzyme Inhibitors/adverse effects , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Antihypertensive Agents/adverse effects , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/complications , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Humans , Hypertension/complications , Hypertension/physiopathology , Lung/physiopathology , Models, Biological , Pandemics/prevention & control , Peptidyl-Dipeptidase A/drug effects , Peptidyl-Dipeptidase A/physiology , Pneumonia, Viral/complications , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , Receptors, Virus/drug effects , Renin-Angiotensin System/drug effects , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/physiopathology , SARS-CoV-2 , Serine Endopeptidases/physiology , Viral Vaccines , Virus Internalization/drug effects
7.
Amino Acids ; 53(6): 813-842, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1216222

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the coronavirus disease 2019 (COVID-19). The World Health Organization (WHO) has announced that COVID-19 is a pandemic having a higher spread rate rather than the mortality. Identification of a potential approach or therapy against COVID-19 is still under consideration. Therefore, it is essential to have an insight into SARS-CoV-2, its interacting partner, and domains for an effective treatment. The present study is divided into three main categories, including SARS-CoV-2 prominent receptor and its expression levels, other interacting partners, and their binding domains. The first section focuses primarily on coronaviruses' general aspects (SARS-CoV-2, SARS-CoV, and the Middle East Respiratory Syndrome Coronaviruses (MERS-CoV)) their structures, similarities, and mode of infections. The second section discusses the host receptors which includes the human targets of coronaviruses like dipeptidyl peptidase 4 (DPP4), CD147, CD209L, Angiotensin-Converting Enzyme 2 (ACE2), and other miscellaneous targets (type-II transmembrane serine proteases (TTSPs), furin, trypsin, cathepsins, thermolysin, elastase, phosphatidylinositol 3-phosphate 5-kinase, two-pore segment channel, and epithelium sodium channel C-α subunit). The human cell receptor, ACE2 plays an essential role in the Renin-Angiotensin system (RAS) pathway and COVID-19. Thus, this section also discusses the ACE2 expression and risk of COVID-19 infectivity in various organs and tissues such as the liver, lungs, intestine, heart, and reproductive system in the human body. Absence of ACE2 protein expression in immune cells could be used for limiting the SARS-CoV-2 infection. The third section covers the current available approaches for COVID-19 treatment. Overall, this review focuses on the critical role of human cell receptors involved in coronavirus pathogenesis, which would likely be used in designing target-specific drugs to combat COVID-19.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Receptors, Cell Surface/drug effects , Receptors, Virus/drug effects , Antiviral Agents/therapeutic use , COVID-19/virology , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification
8.
Endocr Res ; 45(3): 210-215, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-1050038

ABSTRACT

BACKGROUND: Uptake of coronaviruses by target cells involves binding of the virus by cell ectoenzymes. For the etiologic agent of COVID-19 (SARS-CoV-2), a receptor has been identified as angiotensin-converting enzyme-2 (ACE2). Recently it has been suggested that plasma membrane integrins may be involved in the internalization and replication of clinically important coronaviruses. For example, integrin αvß3 is involved in the cell uptake of a model porcine enteric α-coronavirus that causes human epidemics. ACE2 modulates the intracellular signaling generated by integrins. OBJECTIVE: We propose that the cellular internalization of αvß3 applies to uptake of coronaviruses bound to the integrin, and we evaluate the possibility that clinical host T4 may contribute to target cell uptake of coronavirus and to the consequence of cell uptake of the virus. DISCUSSION AND CONCLUSIONS: The viral binding domain of the integrin is near the Arg-Gly-Asp (RGD) peptide-binding site and RGD molecules can affect virus binding. In this same locale on integrin αvß3 is the receptor for thyroid hormone analogues, particularly, L-thyroxine (T4). By binding to the integrin, T4 has been shown to modulate the affinity of the integrin for other proteins, to control internalization of αvß3 and to regulate the expression of a panel of cytokine genes, some of which are components of the 'cytokine storm' of viral infections. If T4 does influence coronavirus uptake by target cells, other thyroid hormone analogues, such as deaminated T4 and deaminated 3,5,3'-triiodo-L-thyronine (T3), are candidate agents to block the virus-relevant actions of T4 at integrin αvß3 and possibly restrict virus uptake.


Subject(s)
Coronavirus Infections/virology , Integrin alphaVbeta3/metabolism , Porcine epidemic diarrhea virus/metabolism , Receptors, Virus/drug effects , Thyroid Hormones/pharmacology , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/metabolism , Binding Sites , COVID-19 , Cytokines/physiology , Epithelial Cells/virology , Humans , Oligopeptides/metabolism , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , Receptors, Virus/chemistry , Receptors, Virus/metabolism , SARS-CoV-2 , Swine , Thyroid Hormones/physiology , Thyroxine/physiology , Virus Internalization
9.
Hypertension ; 77(3): 833-842, 2021 03 03.
Article in English | MEDLINE | ID: covidwho-1021180

ABSTRACT

After initially hypothesizing a positive relationship between use of renin-angiotensin-aldosterone system inhibitors and risk of coronavirus disease 2019 (COVID-19), more recent evidence suggests negative associations. We examined whether COVID-19 risk differs according to antihypertensive drug class in patients treated by ACE (angiotensin-converting enzyme) inhibitors and angiotensin receptor blockers (ARBs) compared with calcium channel blockers (CCBs). Three exclusive cohorts of prevalent ACE inhibitors, ARB and CCB users, aged 18 to 80 years, from the French National Health Insurance databases were followed from February 15, 2020 to June 7, 2020. We excluded patients with a history of diabetes, known cardiovascular disease, chronic renal failure, or chronic respiratory disease during the previous 5 years, to only consider patients treated for uncomplicated hypertension and to limit indication bias. The primary end point was time to hospitalization for COVID-19. The secondary end point was time to intubation/death during a hospital stay for COVID-19. In a population of almost 2 million hypertensive patients (ACE inhibitors: 566 023; ARB: 958 227; CCB: 358 306) followed for 16 weeks, 2338 were hospitalized and 526 died or were intubated for COVID-19. ACE inhibitors and ARBs were associated with a lower risk of COVID-19 hospitalization compared with CCBs (hazard ratio, 0.74 [95% CI, 0.65-0.83] and 0.84 [0.76-0.93], respectively) and a lower risk of intubation/death. Risks were slightly lower for ACE inhibitor users than for ARB users. This large observational study may suggest a lower COVID-19 risk in hypertensive patients treated over a long period with ACE inhibitors or ARBs compared with CCBs. These results, if confirmed, tend to contradict previous hypotheses and raise new hypotheses.


Subject(s)
Angiotensin Receptor Antagonists/adverse effects , Angiotensin-Converting Enzyme 2/drug effects , Angiotensin-Converting Enzyme Inhibitors/adverse effects , Antihypertensive Agents/adverse effects , COVID-19/epidemiology , Hypertension/drug therapy , Pandemics , Receptors, Virus/drug effects , SARS-CoV-2/physiology , Adolescent , Adult , Aged , Aged, 80 and over , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Antihypertensive Agents/therapeutic use , COVID-19/etiology , Calcium Channel Blockers/adverse effects , Calcium Channel Blockers/therapeutic use , Comorbidity , Disease Susceptibility , Drug Utilization , Female , Follow-Up Studies , France/epidemiology , Hospital Mortality , Hospitalization/statistics & numerical data , Humans , Hypertension/epidemiology , Intubation, Intratracheal/statistics & numerical data , Male , Middle Aged , Retrospective Studies , Young Adult
10.
Drug Dev Res ; 82(3): 374-392, 2021 05.
Article in English | MEDLINE | ID: covidwho-917089

ABSTRACT

The outbreak of SARS-CoV-2 has become a threat to global health and has led to a global economic crisis. Although the researchers worldwide are putting tremendous effort toward gaining more insights into this zoonotic virus and developing vaccines and therapeutic drugs, no vaccine or drug is yet available to combat COVID-19 effectively. Drug discovery is often a laborious, time-consuming, and expensive task. In this time of crisis, employing computational methods could provide a feasible alternative approach that can potentially be used for drug discovery. Therefore, a library of several antiparasitic and anti-inflammatory drugs was virtually screened against SARS-CoV-2 proteases to identify potential inhibitors. The identified inhibitory drugs were further analyzed to confirm their activities against SARS-CoV-2. Our results could prove to be helpful in repurposing the drug discovery approach, which could substantially reduce the expenses, time, and resources required.


Subject(s)
COVID-19 Drug Treatment , Drug Discovery/trends , Drug Repositioning/trends , Anti-Inflammatory Agents/therapeutic use , Antiparasitic Agents/therapeutic use , Antiviral Agents/pharmacology , Computational Biology , Computer Simulation , Humans , Models, Molecular , Molecular Docking Simulation , Protease Inhibitors , Receptors, Virus/chemistry , Receptors, Virus/drug effects , Receptors, Virus/genetics , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Viral Proteins/drug effects
11.
PLoS Pathog ; 16(10): e1009037, 2020 10.
Article in English | MEDLINE | ID: covidwho-895087

ABSTRACT

Since SARS-CoV-2 appeared in the human population, the scientific community has scrambled to gather as much information as possible to find good strategies for the containment and treatment of this pandemic virus. Here, we performed a systematic review of the current (pre)published SARS-CoV-2 literature with a focus on the evidence concerning SARS-CoV-2 distribution in human tissues and viral shedding in body fluids. In addition, this evidence is aligned with published ACE2 entry-receptor (single cell) expression data across the human body to construct a viral distribution and ACE2 receptor body map. We highlight the broad organotropism of SARS-CoV-2, as many studies identified viral components (RNA, proteins) in multiple organs, including the pharynx, trachea, lungs, blood, heart, vessels, intestines, brain, male genitals and kidneys. This also implicates the presence of viral components in various body fluids such as mucus, saliva, urine, cerebrospinal fluid, semen and breast milk. The main SARS-CoV-2 entry receptor, ACE2, is expressed at different levels in multiple tissues throughout the human body, but its expression levels do not always correspond with SARS-CoV-2 detection, indicating that there is a complex interplay between virus and host. Together, these data shed new light on the current view of SARS-CoV-2 pathogenesis and lay the foundation for better diagnosis and treatment of COVID-19 patients.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Lung/virology , Pneumonia, Viral/drug therapy , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/virology , Female , Humans , Lung/metabolism , Male , Pandemics , Peptidyl-Dipeptidase A/drug effects , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , Receptors, Virus/drug effects , Receptors, Virus/metabolism , SARS-CoV-2
12.
Virus Res ; 289: 198146, 2020 11.
Article in English | MEDLINE | ID: covidwho-733590

ABSTRACT

The rapid emergence of novel coronavirus, SARS-coronavirus 2 (SARS-CoV-2), originated from Wuhan, China, imposed a global health emergency. Angiotensin-converting enzyme 2 (ACE2) receptor serves as an entry point for this deadly virus while the proteases like furin, transmembrane protease serine 2 (TMPRSS2) and 3 chymotrypsin-like protease (3CLpro) are involved in the further processing and replication of SARS-CoV-2. The interaction of SP with ACE2 and these proteases results in the SARS-CoV-2 invasion and fast epidemic spread. The small molecular inhibitors are reported to limit the interaction of SP with ACE2 and other proteases. Arbidol, a membrane fusion inhibitor approved for influenza virus is currently undergoing clinical trials against COVID-19. In this context, we report some analogues of arbidol designed by scaffold morphing and structure-based designing approaches with a superior therapeutic profile. The representative compounds A_BR4, A_BR9, A_BR18, A_BR22 and A_BR28 restricted the interaction of SARS-CoV-2 SP with ACE2 and host proteases furin and TMPRSS2. For 3CLPro, Compounds A_BR5, A_BR6, A_BR9 and A_BR18 exhibited high binding affinity, docking score and key residue interactions. Overall, A_BR18 and A_BR28 demonstrated multi-targeting potential against all the targets. Among these top-scoring molecules A_BR9, A_BR18, A_BR22 and A_BR28 were predicted to confer favorable ADME properties.


Subject(s)
Antiviral Agents/chemistry , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Indoles/chemistry , Pandemics , Peptidyl-Dipeptidase A/drug effects , Pneumonia, Viral/drug therapy , Receptors, Virus/drug effects , Virus Attachment/drug effects , Algorithms , Angiotensin-Converting Enzyme 2 , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Betacoronavirus/physiology , Biological Availability , COVID-19 , Drug Design , Humans , Indoles/metabolism , Indoles/pharmacology , Molecular Docking Simulation , Molecular Structure , Peptide Hydrolases/physiology , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Protein Domains , Receptors, Virus/metabolism , SARS-CoV-2 , Serine Endopeptidases/drug effects , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship , Virus Internalization , Virus Replication
13.
Med Hypotheses ; 144: 110207, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-726783

ABSTRACT

COVID-19 has been the talk of the year 2020, taking many lives and leaving others in critical conditions. It has clearly and severally been reported that the SARSCoV-2 uses the Angiotensin Converting Enzyme-2 receptors to penetrate and infect cells. Reports have also stated that the nasal and olfactory mucosa are overloaded with these receptors. We emphasize that anosmia in COVID-19 is secondary to the binding of the SARSCoV-2 to Angiotensin Converting Enzyme-2 receptors on the olfactory mucosa. A hypotheses pertaining to the presentation, diagnosis, management and possible prevention of SARS-CoV-2 is proposed. Given the high false negative rates of the polymerase chain reaction (PCR) tests, we suggest that COVID-19 negative patients with anosmia without any other nasal symptom should raise a high index of suspicion and should be further evaluated. We propose the formulation and use of Angiotensin Converting Enzyme-2 receptors agonist or angiotensin receptor blockers (ARBs) as nasal lavage, to reduce the viral load of confirmed positive patients, and as a mode of prevention, especially in high risk patients, until a vaccine is developed. These medications are readily available and testing this theory involves determination of the correct dosage of angiotensin receptor blockers or ACE inhibitors (via dilution in water) that can be used as nasal lavage and performing efficacy trials. Potential side effects to be monitored for include low blood pressure or changes in heart rate. Administration of a medicated nasal lavage may be easier and rapidly disseminated on the nasal mucosa.


Subject(s)
Angiotensin-Converting Enzyme 2/drug effects , Angiotensin-Converting Enzyme 2/metabolism , COVID-19 Drug Treatment , Angiotensin Receptor Antagonists/administration & dosage , Anosmia/diagnosis , Anosmia/etiology , Antiviral Agents/administration & dosage , COVID-19/metabolism , COVID-19/virology , Humans , Models, Biological , Nasal Lavage , Nasal Mucosa/drug effects , Nasal Mucosa/metabolism , Nasal Mucosa/virology , Pandemics , Receptors, Virus/drug effects , Receptors, Virus/metabolism , SARS-CoV-2/drug effects , Viral Load
14.
Endocr Metab Immune Disord Drug Targets ; 20(6): 807-811, 2020.
Article in English | MEDLINE | ID: covidwho-689779
15.
Med Hypotheses ; 143: 110129, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-663304

ABSTRACT

In trying to understand the biochemical mechanism involved in the recent pandemic COVID-19, there is currently growing interest in angiotensin-converting enzyme II (ACE2). Nevertheless, the attempts to counteract COVID-19 interference with this enzymatic cascade are frustrating, and the results have thus far been inconclusive. Let's start again by considering the involved factors in an alternative way: we could postulate that COVID-19 could be more aggressive/fatal due to a high level of "basal" inflammation with low Nitric Oxide (NO) levels in hypertensive, diabetic and obese patients. Interestingly, the "protective" effects of several factors (such as estrogens) may play a role by increasing the formation of endogenous NO. From a therapeutic point of view, phosphodiesterase type 5 inhibitors such as oral Tadalafil, could be used in order to increase the basal NO levels. In this way, we don't fight the virus, but we may be able to mitigate its effects.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/drug therapy , Nitric Oxide/metabolism , Pandemics , Pneumonia, Viral/drug therapy , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/drug effects , COVID-19 , Coronavirus Infections/complications , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/physiopathology , Estrogens/physiology , Humans , Hypertension/complications , Hypertension/physiopathology , Inflammation , Interleukins/physiology , Models, Animal , Models, Biological , Nitric Oxide/therapeutic use , Obesity/complications , Obesity/physiopathology , Off-Label Use , Peptidyl-Dipeptidase A/drug effects , Peptidyl-Dipeptidase A/physiology , Phosphodiesterase 5 Inhibitors/pharmacology , Phosphodiesterase 5 Inhibitors/therapeutic use , Pneumonia, Viral/complications , Receptors, Virus/drug effects , Receptors, Virus/physiology , SARS-CoV-2 , Sildenafil Citrate/pharmacology , Sildenafil Citrate/therapeutic use , Tadalafil/pharmacology , Tadalafil/therapeutic use
16.
Med Hypotheses ; 143: 110112, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-654445

ABSTRACT

In coronavirus disease-19 (COVID-19), four major factors have been correlated with worse prognosis: aging, hypertension, obesity, and exposure to androgen hormones. Angiotensin-converting enzyme-2 (ACE2) receptor, regulation of the renin-angiotensin-aldosterone system (RAAS), and transmembrane serine protease 2 (TMPRSS2) action are critical for the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) cell entry and infectivity. ACE2 expression and RAAS are abnormal in hypertension and obesity, while TMPRSS2 is overexpressed when exposed to androgens, which may justify why these factors are overrepresented in COVID-19. Among therapeutic targets for SARS-CoV-2, we hypothesized that spironolactone, a long used and safe mineralocorticoid and androgen receptors antagonist, with effective anti-hypertensive, cardioprotective, nephroprotective, and anti-androgenic properties may offer pleiotropic actions in different sites to protect from COVID-19. Current data shows that spironolactone may concurrently mitigate abnormal ACE2 expression, correct the balances membrane-attached and free circulating ACE2 and between angiotensin II and Angiotensin-(1-7) (Ang-(1-7)), suppress androgen-mediated TMPRSS2 activity, and inhibit obesity-related RAAS dysfunctions, with consequent decrease of viral priming. Hence, spironolactone may provide protection from SARS-CoV-2, and has sufficient plausibility to be clinically tested, particularly in the early stages of COVID-19.


Subject(s)
Androgen Antagonists/therapeutic use , Androgens/physiology , Betacoronavirus/physiology , Coronavirus Infections/drug therapy , Mineralocorticoid Receptor Antagonists/therapeutic use , Pandemics , Pneumonia, Viral/drug therapy , Renin-Angiotensin System/drug effects , Spironolactone/therapeutic use , Androgen Antagonists/pharmacology , Angiotensin-Converting Enzyme 2 , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , COVID-19 , Cardiotonic Agents/pharmacology , Cardiotonic Agents/therapeutic use , Coronavirus Infections/complications , Coronavirus Infections/epidemiology , Coronavirus Infections/physiopathology , Enzyme Induction/drug effects , Humans , Hypertension/complications , Hypertension/drug therapy , Hypertension/physiopathology , Kidney/drug effects , Male , Mineralocorticoid Receptor Antagonists/pharmacology , Obesity/complications , Obesity/physiopathology , Peptidyl-Dipeptidase A/biosynthesis , Peptidyl-Dipeptidase A/drug effects , Pneumonia, Viral/complications , Pneumonia, Viral/epidemiology , Pneumonia, Viral/physiopathology , Prognosis , Receptors, Virus/drug effects , Risk Factors , SARS-CoV-2 , Serine Endopeptidases/drug effects , Sex Distribution , Spironolactone/pharmacology , Virus Internalization/drug effects , COVID-19 Drug Treatment
17.
Commun Biol ; 3(1): 374, 2020 07 08.
Article in English | MEDLINE | ID: covidwho-640282

ABSTRACT

The recent outbreak of infections and the pandemic caused by SARS-CoV-2 represent one of the most severe threats to human health in more than a century. Emerging data from the United States and elsewhere suggest that the disease is more severe in men. Knowledge gained, and lessons learned, from studies of the biological interactions and molecular links that may explain the reasons for the greater severity of disease in men, and specifically in the age group at risk for prostate cancer, will lead to better management of COVID-19 in prostate cancer patients. Such information will be indispensable in the current and post-pandemic scenarios.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , Prostatic Neoplasms/epidemiology , Sex Distribution , Angiotensin-Converting Enzyme 2 , Antineoplastic Agents, Hormonal/therapeutic use , Antiviral Agents/therapeutic use , Betacoronavirus/physiology , Betacoronavirus/ultrastructure , COVID-19 , Comorbidity , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Disease Susceptibility , Drug Repositioning , Female , Forecasting , Gonadal Steroid Hormones/physiology , Humans , Male , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/physiology , Peptidyl-Dipeptidase A/physiology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/immunology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Protease Inhibitors/therapeutic use , Receptors, Virus/drug effects , Receptors, Virus/physiology , Risk Factors , SARS-CoV-2 , Serine Endopeptidases/biosynthesis , Serine Endopeptidases/physiology , United States/epidemiology , Virus Internalization
18.
Hipertens Riesgo Vasc ; 37(4): 176-180, 2020.
Article in Spanish | MEDLINE | ID: covidwho-615690

ABSTRACT

The association between hypertension, diabetes, cardio and cerebrovascular disease and severe and fatal COVID-19, described in different countries, is remarkable. Myocardial damage and myocardial dysfunction are postulated as a possible causal nexus. Frequent findings of elevated troponin levels and electrocardiographic anomalies support this concept. On the other hand, hypotheses in favour and against a deleterious effect of angiotensin converting enzyme inhibitors and angiotensin receptor blockers, a usual treatment for cardiovascular disease, have been raised. There is currently no solid evidence and thus properly designed studies on this subject are urgently needed. In this context, patients with cardiovascular disease should especially avoid being exposed to the virus, should not self-medicate and rapidly seek medical advice should they show symptoms of infection.


Subject(s)
Betacoronavirus , Cardiovascular Diseases/physiopathology , Coronavirus Infections/physiopathology , Pandemics , Pneumonia, Viral/physiopathology , Age Factors , Aged , Angiotensin II Type 1 Receptor Blockers/adverse effects , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Angiotensin-Converting Enzyme 2 , Angiotensin-Converting Enzyme Inhibitors/adverse effects , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Antihypertensive Agents/adverse effects , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Betacoronavirus/drug effects , COVID-19 , Cardiovascular Diseases/complications , Coronavirus Infections/complications , Early Diagnosis , Heart/physiopathology , Humans , Hypertension/complications , Hypertension/drug therapy , Hypertension/physiopathology , Middle Aged , Myocarditis/etiology , Myocarditis/physiopathology , Peptidyl-Dipeptidase A/drug effects , Peptidyl-Dipeptidase A/physiology , Pneumonia, Viral/complications , Receptors, Virus/drug effects , Receptors, Virus/physiology , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/physiology , Risk Factors , SARS-CoV-2 , Self Medication
19.
Annu Rev Pharmacol Toxicol ; 61: 465-493, 2021 01 06.
Article in English | MEDLINE | ID: covidwho-612187

ABSTRACT

Over the past two decades, deadly coronaviruses, with the most recent being the severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) 2019 pandemic, have majorly challenged public health. The path for virus invasion into humans and other hosts is mediated by host-pathogen interactions, specifically virus-receptor binding. An in-depth understanding of the virus-receptor binding mechanism is a prerequisite for the discovery of vaccines, antibodies, and small-molecule inhibitors that can interrupt this interaction and prevent or cure infection. In this review, we discuss the viral entry mechanism, the known structural aspects of virus-receptor interactions (SARS-CoV-2 S/humanACE2, SARS-CoV S/humanACE2, and MERS-CoV S/humanDPP4), the key protein domains and amino acid residues involved in binding, and the small-molecule inhibitors and other drugs that have (as of June 2020) exhibited therapeutic potential. Specifically, we review the potential clinical utility of two transmembrane serine protease 2 (TMPRSS2)-targeting protease inhibitors, nafamostat mesylate and camostat mesylate, as well as two novel potent fusion inhibitors and the repurposed Ebola drug, remdesivir, which is specific to RNA-dependent RNA polymerase, against human coronaviruses, including SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Receptors, Virus/drug effects , Small Molecule Libraries , Humans , Protease Inhibitors/therapeutic use
20.
Future Med Chem ; 12(17): 1579-1601, 2020 09.
Article in English | MEDLINE | ID: covidwho-610734

ABSTRACT

The SARS-CoV-2 pandemic, declared as a global health emergency by the WHO in February 2020, has currently infected more than 6 million people with fatalities near 371,000 and increasing exponentially, in absence of vaccines and drugs. The pathogenesis of SARS-CoV-2 is still being elucidated. Identifying potential targets and repurposing drugs as therapeutic options is the need of the hour. In this review, we focus on potential druggable targets and suitable therapeutics, currently being explored in clinical trials, to treat SARS-CoV-2 infection. A brief understanding of the complex interactions of both viral as well as host targets, and the possible repurposed drug candidates are described with an emphasis on understanding the mechanisms at the molecular level.


Subject(s)
Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Drug Repositioning , Pneumonia, Viral/drug therapy , Animals , Betacoronavirus/drug effects , Betacoronavirus/growth & development , COVID-19 , Humans , Pandemics , Receptors, Virus/drug effects , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL